Our customers trust us and we to them, and we offer discounts on online pharmacies!

Antibiotics

 There have been many discoveries that have revolutionized the world over the course of human civilization. One of the most significant of these discoveries was that of antibiotics.

Antibiotics are a kind of medicine. Specifically, they are certain substances that when ingested or other wise placed into the human body have the ability slow down or kill bacteria that cause infections. The word antibiotic actually means "anti-life". The life in this case refers to bacteria.

Antibiotics are generally produced through either one of two means. They are either produced naturally through the growing of fungi or produced artificially with chemicals. There are also two broad classifications of antibiotics based on how they operate inside the human body. These include bactericidal antibiotics and bacteriostatic antibiotics. The difference between the two is what they do to bacteria. Bactericidal antibiotics kill bacteria out right.

On the other hand, bacteriostatic antibiotics stop bacterial infections by preventing them from multiplying further in the body. Bacteriostatic antibiotics usually accomplish this by inhibiting the ability of bacteria to produce acids and proteins. Acids and proteins are both needed for the bacterial reproduction process.

One of the most famous antibiotics is penicillin. It derives its name from the fact that it is produced from a kind of fungus known Penicillium. Penicillin was discovered in 1928 by Nobel Prize winner, Alexander Fleming. He made this discovery completely by accident. He had in fact left a laboratory dish containing bacteria near an open window. By accident, the dish became contaminated by Penicillium fungus which had entered through the window. Upon examination under a microscope, he found that the mold was killing the bacteria in the dish.

The first use of penicillin as a cure for a medical condition occurred in 1930. A man known as Cecil Paine successfully used the antibiotic to treat an infection known as neonatal conjunctivitis. Neonatal conjunctivitis is a condition that affects infants. It is transmitted as a baby passes through the birth canal and affects the child's eyes. Paine went on to treat a number of adults with various eye infections with penicillin. It cured a number of them.

The drug was then used famously to save a patient's life in 1942 by Orvan Hess and John Bustead. It was only a few years after that in 1945 that penicillin was first mass produced. This was accomplished using a fermentation process using deep tanks that was developed by Margaret Rousseau, a chemical engineer. The United States viewing the production of the drug as an important asset to boost the war effort resulted in 640 billion units of the antibiotic being produced that year.

Despite its discovery being a total accident, penicillin was perhaps the most important medical discovery of the modern era. Today, penicillin is used to fight a number of different infections including diseases such as staph and syphilis. As important as the discovery of penicillin was on its own, even more important were the hundreds of antibiotics that followed that allowed doctors to threat and cure diseases that had been killers only years earlier.

One such antibiotic is amoxicillin. It is also an antibiotic that belongs to the penicillin classification of antibiotics. Amoxicillin is a bacteriostatic antibiotic. It doesn't kill bacteria out right. It instead stops them from reproducing. It accomplishes this by making it extremely difficult for bacteria to create cell walls.

This ability to prevent bacteria from reproducing has made amoxicillin a very powerful drug used to combat a number of different kinds of bacteria such as E. coli, Streptococcus, and Staphylococcus. It has also been prescribed by many doctors to fight illnesses such as bronchitis, ear infections, gonorrhea, tonsillitis, and urinary tract infections.

Amoxicillin is also often prescribed to treat different miscellaneous health issues based on their symptoms. For example, it is sometimes prescribed to treat cases of acne. However, it's effectiveness as a cure for acne varies from patient to patient.

It is also sometimes used to treat ulcers of both the stomach and the intestines. Someone who has suffered from ulcers may be prescribed the antibiotic to prevent them from coming back once they have dissipated. It may even be given to a patient after surgery when there has been no evidence of any kind of infection. This is sometimes done as a preventative measure to stop an infection from occurring.

One of the benefits of amoxicillin is that it does not have to be injected. It can simply be taken as tablets that can be swallowed with water or simply chewed. Liquid forms of this medicine are also available. However, the liquid form has a relatively short shelf life.

There is also one more great benefit to this antibiotic. Certain people unfortunately can have an allergic reaction to penicillin that can be deadly. However, many of these same people are not in fact allergic to amoxicillin.

Antibiotics by class

Generic name Brand names Common uses Possible side effects Mechanism of action
Aminoglycosides
Amikacin Amikin Infections caused by Gram-negative bacteria, such as Escherichia coli and Klebsiella particularly Pseudomonas aeruginosa. Effective against Aerobic bacteria (not obligate/facultative anaerobes) and tularemia.
  • Hearing loss
  • Vertigo
  • Kidney damage
Binding to the bacterial ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Gentamicin Garamycin
Kanamycin Kantrex
Neomycin Mycifradin
Netilmicin Netromycin
Streptomycin
Tobramycin Nebcin
Paromomycin Humatin
Ansamycins
Geldanamycin Experimental, as antitumor antibiotics
Herbimycin
Carbacephem
Loracarbef Lorabid prevents bacterial cell division by inhibiting cell wall synthesis.
Carbapenems
Ertapenem Invanz Bactericidal for both Gram-positive and Gram-negative organisms and therefore useful for empiric broad-spectrum antibacterial coverage. (Note MRSA resistance to this class.)
  • Gastrointestinal upset and diarrhea
  • Nausea
  • Seizures
  • Headache
  • Rash and allergic reactions
Inhibition of cell wall synthesis
Doripenem Finibax
Imipenem/Cilastatin Primaxin
Meropenem Merrem
Cephalosporins (First generation)
Cefadroxil Duricef
  • Gastrointestinal upset and diarrhea
  • Nausea (if alcohol taken concurrently)
  • Allergic reactions
Same mode of action as other beta-lactam antibiotics: disrupt the synthesis of the peptidoglycan layer of bacterial cell walls.
Cefazolin Ancef
Cefalotin or Cefalothin Keflin
Cefalexin Keflex
Cephalosporins (Second generation)
Cefaclor Ceclor
  • Gastrointestinal upset and diarrhea
  • Nausea (if alcohol taken concurrently)
  • Allergic reactions
Same mode of action as other beta-lactam antibiotics: disrupt the synthesis of the peptidoglycan layer of bacterial cell walls.
Cefamandole Mandole
Cefoxitin Mefoxin
Cefprozil Cefzil
Cefuroxime Ceftin, Zinnat
Cephalosporins (Third generation)
Cefixime Suprax
  • Gastrointestinal upset and diarrhea
  • Nausea (if alcohol taken concurrently)
  • Allergic reactions
Same mode of action as other beta-lactam antibiotics: disrupt the synthesis of the peptidoglycan layer of bacterial cell walls.
Cefdinir Omnicef, Cefdiel
Cefditoren Spectracef
Cefoperazone Cefobid
Cefotaxime Claforan
Cefpodoxime Vantin
Ceftazidime Fortaz
Ceftibuten Cedax
Ceftizoxime
Ceftriaxone Rocephin
Cephalosporins (Fourth generation)
Cefepime Maxipime
  • Gastrointestinal upset and diarrhea
  • Nausea (if alcohol taken concurrently)
  • Allergic reactions
Same mode of action as other beta-lactam antibiotics: disrupt the synthesis of the peptidoglycan layer of bacterial cell walls.
Cephalosporins (Fifth generation)
Ceftobiprole Used to treat MRSA
  • Gastrointestinal upset and diarrhea
  • Nausea (if alcohol taken concurrently)
  • Allergic reactions
Same mode of action as other beta-lactam antibiotics: disrupt the synthesis of the peptidoglycan layer of bacterial cell walls.
Glycopeptides
Teicoplanin inhibiting peptidoglycan synthesis
Vancomycin Vancocin
Macrolides
Azithromycin Zithromax, Sumamed, Zitrocin Streptococcal infections, syphilis, respiratory infections, mycoplasmal infections, Lyme disease
  • Nausea, vomiting, and diarrhea (especially at higher doses)
  • Jaundice
inhibition of bacterial protein biosynthesis by binding irreversibly to the subunit 50S of the bacterial ribosome, thereby inhibiting translocation of peptidyl tRNA.
Clarithromycin Biaxin
Dirithromycin Dynabac
Erythromycin Erythocin, Erythroped
Roxithromycin
Troleandomycin TAO
Telithromycin Ketek Pneumonia Visual Disturbance, Liver Toxicity.
Spectinomycin Antimetabolite, Anticancer
Monobactams
Aztreonam Azactam Same mode of action as other beta-lactam antibiotics: disrupt the synthesis of the peptidoglycan layer of bacterial cell walls.
Penicillins
Amoxicillin Novamox, Amoxil Wide range of infections; penicillin used for streptococcal infections, syphilis, and Lyme disease
  • Gastrointestinal upset and diarrhea
  • Allergy with serious anaphylactic reactions
  • Brain and kidney damage (rare)
Same mode of action as other beta-lactam antibiotics: disrupt the synthesis of the peptidoglycan layer of bacterial cell walls.
Ampicillin Principen
Azlocillin
Carbenicillin
Cloxacillin Tegopen
Dicloxacillin Dynapen
Flucloxacillin Floxapen
Mezlocillin
Meticillin
Nafcillin
Oxacillin
Penicillin
Piperacillin
Ticarcillin
Polypeptides
Bacitracin Eye, ear or bladder infections; usually applied directly to the eye or inhaled into the lungs; rarely given by injection Kidney and nerve damage (when given by injection) Inhibits isoprenyl pyrophosphate, a molecule which carries the building blocks of the peptidoglycan bacterial cell wall outside of the inner membrane
Colistin Interact with the bacterial cytoplasmic membrane, changing its permeability.
Polymyxin B
Quinolones
Ciprofloxacin Cipro, Ciproxin, Ciprobay Urinary tract infections, bacterial prostatitis, community-acquired pneumonia, bacterial diarrhea, mycoplasmal infections, gonorrhea Nausea (rare), irreversible damage to central nervous system (uncommon), tendinosis (rare) inhibit the bacterial DNA gyrase or the topoisomerase IV enzyme, thereby inhibiting DNA replication and transcription.
Enoxacin Penetrex
Gatifloxacin Tequin
Levofloxacin Levaquin
Lomefloxacin Maxaquin
Moxifloxacin Avelox
Norfloxacin Noroxin
Ofloxacin Floxin, Ocuflox
Trovafloxacin Trovan Withdrawn
Grepafloxacin Raxar Withdrawn
Sparfloxacin Zagam Withdrawn
Temafloxacin Omniflox Withdrawn
Sulfonamides
Mafenide Urinary tract infections (except sulfacetamide and mafenide); mafenide is used topically for burns
  • Nausea, vomiting, and diarrhea
  • Allergy (including skin rashes)
  • Crystals in urine
  • Kidney failure
  • Decrease in white blood cell count
  • Sensitivity to sunlight
Folate synthesis inhibition. They are competitive inhibitors of the enzyme dihydropteroate synthetase, DHPS. DHPS catalyses the conversion of PABA (para-aminobenzoate) to dihydropteroate, a key step in folate synthesis. Folate is necessary for the cell to synthesize nucleic acids (nucleic acids are essential building blocks of DNA and RNA), and in its absence cells will be unable to divide.
Sulfonamidochrysoidine (archaic) Prontosil
Sulfacetamide
Sulfadiazine Micro-Sulfon
Sulfamethizole
Sulfanilimide (archaic)
Sulfasalazine Azulfidine
Sulfisoxazole
Trimethoprim Trimpex
Trimethoprim-Sulfamethoxazole (Co-trimoxazole) (TMP-SMX) Bactrim, Septra
Tetracyclines
Demeclocycline Declomycin Syphilis, chlamydial infections, Lyme disease, mycoplasmal infections, acne rickettsial infections, malaria. Note: Malaria is caused by a protist and not a bacterium.
  • Potentially Permanent
  • Gastrointestinal upset
  • Sensitivity to sunlight
  • Potential toxicity to mother and fetus during pregnancy
  • Enamel hypoplasia (staining of teeth)
  • transient depression of bone growth
inhibiting the binding of aminoacyl-tRNA to the mRNA-ribosome complex. They do so mainly by binding to the 30S ribosomal subunit in the mRNA translation complex.
Doxycycline Vibramycin
Minocycline Minocin
Oxytetracycline Terramycin
Tetracycline Sumycin, Achromycin V, Steclin
Others
Arsphenamine Salvarsan Spirochaetal infections (obsolete)
Chloramphenicol Chloromycetin meningitis, Rarely: aplastic anemia. Inhibits bacterial protein synthesis by binding to the 50S subunit of the ribosome
Clindamycin Cleocin acne infections, prophylaxis before surgery
Lincomycin Lincocin acne infections, prophylaxis before surgery
Ethambutol Myambutol Antituberculosis
Fosfomycin Monurol
Fusidic acid Fucidin
Furazolidone
Isoniazid I.N.H. Antituberculosis
Linezolid Zyvox VRSA
Metronidazole Flagyl Giardia
Mupirocin Bactroban
Nitrofurantoin Macrodantin, Macrobid
Platensimycin
Pyrazinamide Antituberculosis
Quinupristin/Dalfopristin Syncercid
Rifampicin (Rifampin in US) mostly Gram-positive and mycobacteria Reddish-orange sweat, tears, and urine Binds to the β subunit of RNA polymerase to inhibit transcription
Thiamphenicol Gram-negative, Gram-positive, anaerobes. Widely used in veterinary medicine. Lacks known anemic side-effects. A chloramphenicol analog. May inhibit bacterial protein synthesis by binding to the 50S subunit of the ribosome
Tinidazole
Dapsone Avlosulfon Antileprotic
Lamprene Antileprotic
Generic Name Brand Names Common Uses Possible Side Effects Mechanism of action

Articles
MedlifePro